КАЧЕСТВО И ОХРАНА ВОД, ЭКОЛОГИЧЕСКИЕ ПРОЦЕССЫ

УДК 551.464(282.6):551.465.431:551.468.6:556.541

ЗАКОНОМЕРНОСТИ ВНУТРИСУТОЧНОЙ ИЗМЕНЧИВОСТИ ГИДРОХИМИЧЕСКИХ ПОКАЗАТЕЛЕЙ В ПРИБРЕЖНОЙ ЗОНЕ МОРЯ

© 2009 г. О. В. Шевнова

Тихоокеанский океанологический институт Дальневосточного отделения Российской академии наук 690041 Владивосток, ул. Балтийская, 43 Поступила в редакцию 11.12.2007 г.

На примере Амурского зал. (Японское море) показано, что в находящейся под влиянием берегового стока прибрежной зоне моря величина внутрисуточной изменчивости гидрохимических показателей подчиняется ряду закономерностей. В частности, в поверхностной фронтальной зоне эстуариев изменчивость солености экспоненциально возрастает в направлении реки и достигает наибольших значений на участке высоких продольных градиентов, где наблюдаются отклонения внутрисуточных распределений солености от нормального закона.

Значение и пространственное распределение величины внутрисуточной изменчивости океанологических показателей (измеряемой обычно как стандартное отклонение s^* или вариационный размах ΔP в точке) характеризуют степень неоднородности вод во времени, их динамичность.

Оценки значений s^* или ΔP в районе исследования необходимы для корректных представлений о величинах изменчивости с масштабами, превышающими сутки (например, сезонной), для объективного анализа особенностей пространственных полей показателей и процессов формирования этих полей и в других случаях [14].

Представляет интерес изучение внутрисуточной изменчивости гидрохимических показателей в прибрежной зоне моря, подверженной влиянию берегового стока. Здесь ее значения наиболее высоки, коэффициенты вариаций показателей у* достигают десятков процентов, а время выполнения пространственных съемок часто составляет сутки и более. Здесь же высока изменчивость самой внутрисуточной изменчивости (как пространственная, так и временная), и следует ожидать сложную неоднородную структуру ее полей. Предпосылки этих явлений – поставка веществ береговыми и грунтовыми водами, процессы обмена веществами на границе вода восстановленные ДО, субмаринная разгрузка пресных вод и активные биохимические процессы на фоне вариаций берегового стока, приливно-отливных колебаний, сгонно-нагонных явлений, ветрового перемешивания и сложной динамики вод в системе река – море. Важность изучения устьевых областей рек и эстуариев хорошо известна [7, 12, 14, 16].

Оценка значений s^* или ΔP предполагает наблюдения на суточных станциях. При необходимости количественного описания внутрисуточной динамики района исследования возникает вопрос об их оптимальном расположении и количестве. Знание ос-

новных особенностей структуры полей внутрисуточной изменчивости позволяет обоснованно выбирать точки наблюдений и сводить их число к разумному минимуму, а также использовать эти особенности при прогнозировании изменчивости качества вод, моделировании гидрохимического режима и в различных оценочных расчетах.

В данной работе на примере Амурского зал. рассматриваются закономерности изменения величины внутрисуточной изменчивости ряда гидрохимических показателей в прибрежной зоне моря, подверженной влиянию берегового стока.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Использован экспериментальный материал, полученный в экспедициях Тихоокеанского океанологического института Дальневосточного отделения РАН летом 1982-1987 гг. на акватории от начала свала глубин устьевого взморья р. Раздольной – самой многоводной реки Амурского зал. – до предустьевого пространства моря (о. Попова). Река впадает в северную полузакрытую часть залива, морская граница которой проходит на широте м. Песчаный. Эту границу принято считать среднемноголетней морской границей эстуария р. Раздольной в летний период. Подробное описание залива дано в [6, 9, 12]. Здесь рассматриваются данные с 22 горизонтов 8 суточных станций, каждая из которых длилась не менее двух приливных периодов (24-52 ч). Схема расположения станций, периодичность наблюдений на них, соответствующий цифровой и графический материал, а также описание гидрохимического режима в районе станций частично приводились ранее [1–4, 12–14]. В табл. 1 даны краткие сведения о некоторых особенностях условий наблюдения.

Таблица 1. Некоторые особенности условий проведения наблюдений на суточных станциях 1-8 (Φ – фактор; здесь и в табл. 2, 4 пов. – поверхностный, прид. – придонный)

№ стан- ции	Глубина	Горизонт	$S_{\min} - S_{\max}(\langle S \rangle),$	Некоторые факторы, влияющие на внутрисуточную изменчивость и среднесуточное значение гидрохимических показателей в точке наблюдений				
		M	%0					
1	5	Пов.	22.3–27.1 (25.4)	Φ_1 – перемешивание вод по глубине при нагонном ветре скоростью				
1	5	4.5, прид.	25.4–27.1 (26.2)	порывами до 16 м/с в первую половину наблюдений, затихание ветра до 4 м/с к концу наблюдений; Φ 2 – высокие скорости течения (в поверхностных водах 13–23 см/с) [1, 14]				
2	21	Пов.	25.3–27.4 (26.4)	Φ_3 – скорость ветра до 5 м/с; Φ_4 – низкие скорости течения (на поверхности $V=2$ –6 см/с); Φ_5 – антропогенные стоки г. Владивосток; Φ_6 – интенсивный фотосинтез ($\langle X \pi «a» \rangle = 23 \pm 11 \text{ мг/л}$, $\langle O_2 \% \rangle = 112.5 \pm 3.9 \%$, $\langle \text{pH} \rangle = 8.33 \pm 0.05$) [3, 14]				
2	21	10.0	31.5–32.2 (31.8)	Φ_7 — поступление в конце наблюдений вод компенсационной природы с высоким содержанием биогенных элементов и повышенной температурой [3]				
2	21	20.0, прид.	32.9–33.1 (32.99)	Φ_8- значительное влияние восстановленных ДО (дампинг грунтов из порта г.Владивосток, загрязненных нефтяными углеводородами, $\langle {\rm O}_2\% \rangle = 61.7 \pm 7.8\%, \langle {\rm pH} \rangle = 7.99 \pm 0.13)~[3, 14]$				
3	8	Пов.	29.3–30.5 (29.7)	Φ_9 – сгонный ветер (из бухты) со скоростью до 5 м/с; Φ_{10} – сток речки Поповка и родников;				
3	8	3.0	29.4–30.7 (29.9)	Φ_{11} – низкие скорости течения (в поверхностных водах V = 2–5 см/с) [2, 13, 14]				
3	8	7.0, прид.	31.4–32.8 (32.4)	Φ_{12} – субмаринная разгрузка родниковых вод [2, 13, 14]				
4	12	Пов.	29.8–33.0 (31.98)	Φ_{13} – сгонный и нагонный ветер со скоростью до 6 м/с; Φ_{14} – атмосферные осадки, разлившиеся береговые водотоки; Φ_{15} – низкие скорости течения ($\langle V \rangle$ = 3.6 ± 0.8 см/с) [13,14]				
4	12	4.0	32.6–33.2 (32.91)	Φ_{16} – низкие скорости течения: $\langle V \rangle = 4 \pm 1$ см/с на горизонтах 4, 7 и 10 м;				
4	12	7.0	32.7–33.2 (33.02)	p_{17} — хорошее перемешивание вод по вертикали [13, 14]				
4	12	10.0, прид.	32.7–33.3 (33.04)	SEASON OF THE PROPERTY OF THE				
5	5	Пов.	23.7–30.6 (29.1)	Φ_{18} – слабый нагонный ветер; Φ_{19} – низкий расход воды р. Раздольная				
5	5	4.5, прид.	30.3–32.0 (31.0)	NORMAL MARKET STATE OF THE PARTY OF THE PART				
6	5.5	Пов.	23.9–31.9 (30.4)	Φ_{20} – перемешивание вод по глубине при нагонном ветре в первую по-				
6	5.5	5.0, прид.	31.3–31.9 (31.7)	ловину наблюдений, затихание ветра к концу наблюдений; Φ_{21} – низкий расход воды р. Раздольная [4]				
7	4.5	Пов.	12.3–24.8 (22.6)	Φ_{22} – ветер со среднесуточной скоростью 4.6 \pm 1.3 м/с и среднесуточным				
7	4.5	1.0	21.2–26.1 (24.2)	направлением 187 ± 35 град.; Φ_{23} – относительно высокие скорости течения: $\langle V \rangle = 11 \pm 7, \langle V \rangle = 13 \pm 9$ и $\langle V \rangle = 12 \pm 9$ см/с на поверхностном и				
7	4.5	2.0	21.9–27.4 (25.7)	горизонтах (1 и 2 м соответственно)				
7	4.5	3.0	24.9–28.3 (27.1)	Φ_{24} – относительно высокие и средние скорости течения: $\langle V \rangle$ = 11 ± 4 и				
7	4.5	4.0, прид.	25.7–29.4 (27.7)	$\langle \hat{V} \rangle = 8 \pm 3$ см/с на горизонтах 3 и 4 м соответственно				
8	5	Пов.	17.5–24.4 (23.2)	Ф ₂₅ – слабый нагонный ветер				

Станции 1 (27–28 июля 1984 г.), 5 (3–4 сентября 1982 г.), 6 (7–8 августа 1985 г.), 7 (12–13 июля 1987 г.) и 8 (5–6 августа 1987 г.) были выполнены в 4–5 км от речного бара на его морском склоне (северная часть залива), ст. 2 (17–18 июля 1984 г.) – в открытой южной части залива, ст. 3 (12–13 июля 1984 г.) – примерно в центре полузамкнутой бух. Алексеева (о. Попова, южная часть залива), ст. 4 (29 июня–1 июля 1986 г.) – на выходе из бух. Алексеева. Ст. 1, 5–8 расположены в той части фронтальной зоны эстуария р. Раздольной, где обычно наблюдаются

наиболее высокие для залива пространственные градиенты океанологических показателей [1, 6, 12]. Район станций 3, 4 удален от устья реки примерно на 70 км и, как правило, влияние ее вод здесь незначительно. Однако, ст. 3 и поверхностные горизонты ст. 4 находятся под воздействием родников и других мелких береговых водотоков (табл. 1).

По данным гидрометеопоста с. Тереховка, в период выполнения станций 1–4, 8 водный сток р. Раздольной составлял 70–106 м³/с, т. е. был близок к июльскому среднемноголетнему, 98 м³/с, и к много-

летнему среднегодовому, 76 м³/с [9]. Станции 5 и 6 выполнялись в межень, когда сток реки составлял всего 52 и 33 м³/с соответственно и устьевое взморье в начале свала глубин заполнялось водами повышенной солености.

При интерпретации результатов наблюдений использовались данные по солености на поверхностном разрезе вдоль оси стокового течения реки от бара (глубина 1 м) до м. Песчаный (глубина 18.5 м) [1, 12] и на суточных станциях в реке: на ст. 9, 11 (район створа основного рукава реки), на ст. 10, 12 (~7 км от створа). Разрез был выполнен в штиль 25-26 июля 1984 г.: первые 5 станций – в первый день наблюдений в течение 4 ч в отлив, станции 6-9 - во второй день наблюдений в течение 3 ч (станции 6 в малую воду, 7-9 - в прилив). Расположение ст. 4 разреза и суточных станций 1,7 совпадали (рис. 1а). Суточные станции 9, 10 проведены в первой декаде августа 1985 г. на поверхностном и придонном (3.5 и 1.0 м соответственно) горизонтах [4], суточные станции 11 и 12 – в последней трети июля 1987 г. и в начале августа 1987 г. соответственно, на поверхностном и придонном горизонтах 1, 2 – 4 м.

Комплекс рассматриваемых показателей включал: соленость S, хлорность Cl^- , компоненты основного солевого состава (ОСС) (Na⁺, K⁺, Ca²⁺, Mg²⁺ и SO_4^{2-}), элементы карбонатной системы и их хлорные отношения (активность ионов водорода а,,+, общая щелочность ТА, сумма неорганического углерода ТСО2, концентрации карбонат- и бикарбонат-ионов CO_3^{2-} и HCO_3^{-} , парциальное давление углекислого газа рСО₂, растворенный углекислый газ CO_2 , насыщенность вод карбонатом кальция L_{κ} и TA/Cl-, TCO₂/Cl-), биогенные вещества (азот аммонийный NH_4^+ , нитритный NO_2^- и нитратный NO_3^- , неорганические растворенные фосфор PO_4^{3-} и кремний SiO₃), общее содержание органического углерода C_{opr} , растворенный кислород O_2 и степень насыщения воды кислородом O_2^* , содержание взвешенного вещества С, и имеющийся только для пяти точек наблюдения Xл «а». Сведения о методах анализа и расчета перечисленных показателей приведены в [2, 14]. Направление и скорость течений V (табл. 1) в поверхностных водах (станций 1— 3) фиксировали с помощью поплавка и секундомера, на станциях 4, 7 измерителем течений ГР-42. Наиболее полный набор из перечисленных выше показателей был получен на суточных станциях 1-4.

В каждой точке наблюдений для каждого показателя оценивали его среднесуточное значение *P* и, в качестве наиболее представительной характеристики изменчивости [8, 15], стандартное отклонение *s**.

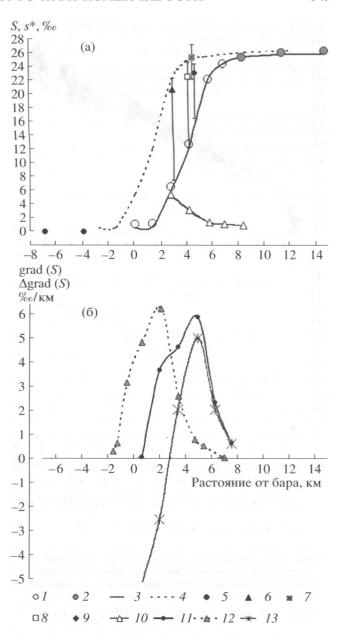
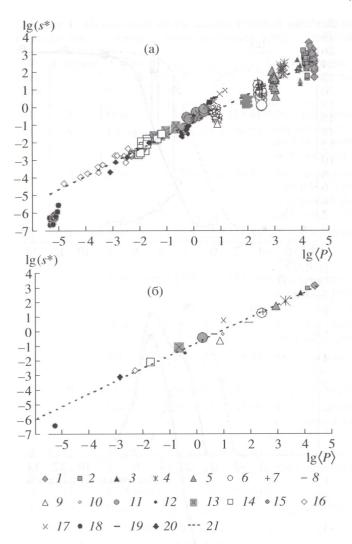



Рис. 1. Распределение солености и внутрисуточной изменчивости солености s^* (a), горизонтальных градиентов солености grad (S) и их разности Δ grad (S) (б) на разрезе р. Раздольная - Амурский зал. (м. Песчаный). І и 2 – экспериментальные значения солености в отлив и прилив; 3 и 4 – ориентировочная минимальная и максимальная за сутки соленость (оценена по данным для поверхностного горизонта суточной ст. 7); 5 и 6 – среднесуточная соленость на всех горизонтах речных станций 9-12 и в точке максимальной внутрисуточной изменчивости; 7-9 - среднесуточная соленость на поверхностном горизонте суточных станций 1, 7, 8; 10 - внутрисуточная изменчивость; вертикальные отрезки показывают вариационный размах солености; 11 и 12 – оценки горизонтальных градиентов солености в отлив и прилив; 13 – их разность. Данные натурных наблюдений получены при расходе воды в реке $70-106 \text{ м}^3/\text{с}$.

Рис. 2. Соотношение среднесуточных значений и внутрисуточной изменчивости для комплекса гидрохимических показателей в Амурском зал. на станциях 1–8 (а) и на поверхностном горизонте ст. 1 (б). l-20-S, CI⁻, Na⁺, SO₄²⁻, Mg²⁺, K⁺, Ca²⁺, HCO₃⁻, O₂, CO₃²⁻, SiO₃, CO₂, NH₄⁺, PO₄³⁻, NO₃⁻, NO₂⁻, C_B, $a_{\rm H^+}$, C_{opr}, Xл«а» соответственно; 2I – линейная регрессия.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Весь спектр полученных оценок s^* укладывается в интервал $2.4 \times 10 E(-7)$ — $3.4 \times 10 E(3)$ мг/кг для a_{H^+} и S соответственно, а соответствующих оценок $\langle P \rangle - 4.7 \times 10 E(-6)$ — $3.3 \times 10 E(4)$ мг/кг. Между величинами s^* и $\langle P \rangle$ прослеживается линейная связь, особенно ярко выраженная в двойном логарифмическом масштабе (рис. 2a). Без учета данных для a_{H^+} коэффициент корреляции между $\lg(s^*)$ и $\lg(\langle P \rangle)$ составил r=0.95 (число пар k=265). В целом линейная связь между s^* и $\langle P \rangle$ имеет определенную тонкую структуру, характерную для зоны

смешения речных и морских вод. В каждой точке наблюдений показатель с большим среднесуточным значением проявляет, как правило, и большую внутрисуточную изменчивость — для показателя с большими концентрациями характерны и большие пространственно-временные градиенты (рис. 2б). От этой линейной зависимости наиболее существенно отклоняется a_{H^+} , чья изменчивость снижена, очевидно, за счет одновременного участия ионов водорода в различных химических равновесиях (карбонатной системы и других). В то же время, значения s^* большинства показателей в различных точках находятся в линейной возрастающей или убывающей связи с соответствующими значениями $\langle P \rangle$.

Все показатели можно разделить по величине и уровню значимости коэффициентов корреляции между $\langle P \rangle$ и s^* (по r и p) на три группы: с отрицательными значимыми r (r < 0, p < 0.05); с положительными значимыми r (r > 0, p < 0.05); с незначимыми r (p > 0.05). К первой группе относятся S, компоненты ОСС, HCO_3^- , TA, TCO_2 , O_2 и O_2^* , ко второй — биогенные вещества, C_B , a_H^- , TA/Cl^- , TCO_2/Cl^- , CO_2 , pCO_2 и $X\pi$ «а», к третьей — CO_3^{2-} , $L_{\rm K}$, $C_{\rm opr}$ (табл. 2—3, рис. 2а, 3).

При делении показателей по группам не использовали данные о HCO_3^- и SO_4^{2-} на придонном горизонте ст. 2 и данные о НСО₃ на придонном горизонте ст. 3. Их учет приводил к значительному снижению коэффициентов г. При применении более жесткого критерия значимости r (например, p < 0.04) следовало бы не учитывать и данные о ТСО2 на придонном горизонте ст. 2 (табл. 2). Для указанных вод были характерны высокие среднесуточные величины названных показателей в сочетании с повышенными значениями их изменчивости (рис. 3е), что нехарактерно для залива в целом. На ст. 2 повышение изменчивости НСО₃ и ТСО₂ связано с регулируемым приливами поступлением карбонатов из восстановленных ДО, а повышение изменчивости SO_4^{2-} , очевидно, с поступлением из этих осадков различных форм серы, образующихся при восстановлении сульфатов и при деструкции серосодержащих соединений в составе антропогенных нефтяных углеводородов (табл. 1) [3]. Высокая изменчивость НСО₃ на ст. 3 обусловлена, главным образом, субмаринной разгрузкой родниковых вод. Наиболее ярко этот процесс проявлялся в период времени, охватывающий момент низкой малой воды, о чем свидетельствовало синхронное появление локальных минимумов уровня вод, S, SO_4^{2-}/Cl^- , содержания биогенных веществ и локальных максимумов AT/Cl $^-$ и pH (табл. 1) [2, 5].

Механизм формирования убывающей линейной связи между $\langle P \rangle$ и s^* для показателей первой группы (кроме O_2 , O_2^*), изменяющихся, главным образом, в результате консервативного перемешивания вод различной солености, связан с их пространственными градиентами и с приливно-отливными колебаниями вод. Чем выше в окрестности точки наблюдений горизонтальные и вертикальные градиенты данного показателя и градиенты скорости течений, тем большие значения s^* этого показателя должны здесь наблюдаться. На исследуемой акватории сочетание наибольших пространственных градиентов гидрохимических параметров, высоких скоростей течений и их градиентов приурочено к поверхностным слоям вод во фронтальной зоне эстуария р. Раздольной. По мере движения в сторону моря и отклонения от оси речной струи эти характеристики и, следовательно, значения s^* гидрохимических параметров, в целом, уменьшаются. При этом, поскольку для морских вод характерны большие значения показателей первой группы чем для речных вод, соответствующие значения $\langle P \rangle$ возрастают (табл. 1, рис. 3e, 3ж) [1, 6, 7].

На основной механизм формирования убывающей линейной связи между $\langle P \rangle$ и s^* , обусловленный влиянием реки и приливов, накладываются второстепенные механизмы. Они связаны с факторами, занижающими или завышающими внутрисуточную изменчивость того или иного показателя относительно той, которая наблюдалась бы в данной точке при отсутствии этих факторов. Ослабляющее влияние второстепенных механизмов на линейную связь между $\langle P \rangle$ и s^* демонстрирует табл. 2, где для большинства показателей первой группы приведено по два и более значений г. Выше уже отмечалось существенное снижение r за счет повышения изменчивости НСО₃ на придонном горизонте ст. 2 при поступлении карбонатов из восстановленных ДО и на придонном горизонте ст. 3 при субмаринной разгрузке родниковых вод. Выход родниковых вод в высокосоленые воды придонного горизонта ст. 3 увеличивал вариации и К+, Са²⁺, Mg^{2+} , SO_4^{2-} (рис. 3e, 3ж, табл. 1, 2) [2, 3, 13].

На изменчивость и содержание HCO_3^- и TCO_2 большое влияние оказывают биохимические процессы и химические равновесия. Поэтому соответствующие коэффициенты r в принципе не могут достигать больших значений (табл. 2, рис. 3e).

Фактором, влияющим на внутрисуточную изменчивость, может быть ветер. Так, на поверхностном горизонте ст. 4 изменчивость некоторых показателей существенно увеличилась в результате че-

Таблица 2. Коэффициенты корреляции между $\langle P \rangle$ и s^* для показателей первой группы в интервале $\langle S \rangle$ от 22.6 до 33.0% (прочерк — сложность однозначного выделения точки наблюдений с данными, существенно занижающими коэффициент корреляции по модулю |r|; здесь и в табл. 3 m — число точек наблюдений)

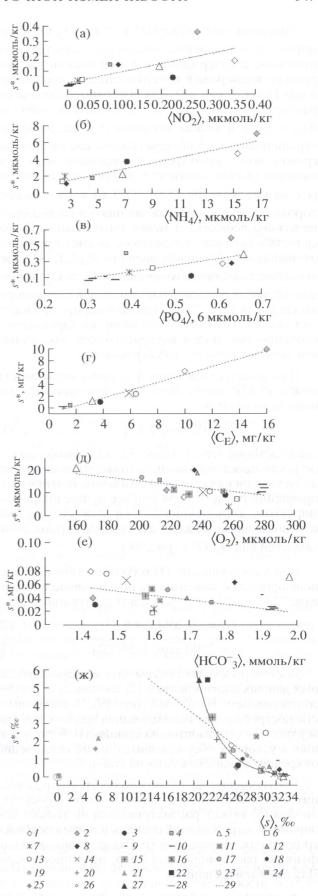
Пока- затель	r	p (m)	Горизонты с данными наблюдений, существенно занижающими значения r (вызывающий это занижение фактор в табл. 1)
$S^{-(1)}$	-0.65	<0.001 (22)	Пов. на станциях 5 и 6 (Ф ₁₉ и
14.0		9 1	$ \Phi_{21}\rangle$
S	-0.80	<0.001 (20)	
SO_4^{2-}	-0.29	>0.05 (16)	Прид., ст. 2 (Ф8)
SO_4^{2-}	-0.64	<0.01 (15)	Прид., ст. 3 (Ф ₁₂)
SO_4^{2-}	-0.70	<0.01 (14)	li san les gotte t
Mg ²⁺	-0.70	< 0.01 (17)	Прид., ст. 3 (Ф ₁₂)
Mg ²⁺	-0.76	<0.001 (16)	
Ca ²⁺	-0.54	<0.02(19)	Пов., ст. 4 (Ф ₁₃ и Ф ₁₄)
Ca ²⁺	-0.61	<0.01 (18)	Пов., ст. 5 (Ф ¹⁹)
Ca ²⁺	-0.65	<0.01 (17)	Прид., ст. 3 (Φ^{12})
Ca ²⁺	-0.70	<0.01 (16)	1
HCO_3^-	-0.24	>0.05 (19)	Прид. на ст. 2 и 3 (Φ_8 и Φ_{12})
HCO_3^-	-0.53	<0.05 (17)	Пов., ст. 2 (Φ_4 и Φ_6)
HCO_3^-	-0.62	<0.01 (16)	and the same
TA	-0.63	<0.01 (19)	Пов. на ст. 4 и 5 (Ф ₁₃ и Ф ₁₄)
TA	-0.73	<0.001 (17)	C1 8011 1 1
TCO ₂	-0.48	<0.05 (18)	Прид., ст. 2 (Ф8)
TCO ₂	-0.58	< 0.02 (17)	7.1 <u>.0.5</u> 1.7
O_2	-0.52	< 0.02 (19)	4 м, ст. 4
O_2	-0.57	<0.001 (18)	
O ₂ *	-0.51	<0.04 (19)	Прид., ст. 5
O ₂ *	-0.64	<0.01 (18)	

редования сгонного и нагонного ветра (из бухты и в бухту соответственно). Для S наблюдаемое значение s^* составило 0.94% (рис. 3ж). В отсутствии тренда солености, сформированного сгонно-нагонными явлениями, оно составляло бы 0.24 [13, 14].

Фактором резкого увеличения внутрисуточной изменчивости показателей на взморье при высоких среднесуточных соленостях может быть низкий сток реки. На поверхностных горизонтах станций 5, 6 зафиксированы повышенные значения *s** для со-

Таблица 3. Проверка внутрисуточных распределений S на нормальность с помощью критериев согласия для малых выборок (п – число наблюдений в точке)

№ стан- ции	Гори- зонт, м	n	$3\sqrt{D(A)}$	$2\sqrt{D(A)}$	A	$5\sqrt{D(E)}$	$3\sqrt{D(E)}$	E	Соответствие нормальном распределению
					Прибрех	кные воды	a mozinje	mnous	no († Ospelkoneroje), remiv
1	Пов.	9	1.9	1.3	-0.8	3.7	2.2	-1.2	Нормально
1	4.5	9	1.9	1.3	0.05	3.7	2.2	-1.1	CONTRACTOR OF A STATE OF THE ST
2	Пов.	9	1.9	1.3	0.04	3.7	2.2	-1.0	» > 102 main »
2	10.0	9	1.9	1.3	0.09	3.7	2.2	-1.5	» »
2	20.0	9	1.9	1.3	0.4	3.7	2.2	-0.5	DO DET HARES STREET
3	Пов.	10	1.8	1.2	1.2	3.8	2.3	0.5	POSTE MERCHON REPORTS
3	3.0	10	1.8	1.2	1.2	3.8	2.3	1.3	CONCERENT ANGUNDANIA CONC
3	7.0	10	1.8	1,2	-0.7	3.8	2.3	-1.0	COOLONY CKOOKIA. IICATO
4	Пов.	19*	1.5	1.0	0.04	3.8	2.3	-1.1	Section with the section of the sect
4	Пов.	19**	1.5	1.0	-0.5	3.8	2.3	-1.3	w wodenz "RHEDKHAR
4	4.0	19*	1.5	1.0	-0.6	3.8	2.3	-0.5	Tracqua une acerta nons
4	4.0	19**	1.5	1.0	0.01	3.8	2.3	-1.6	w. wichtin around This
4	7.0	19*	1.5	1.0	-1.2	3.8	2.3	2.1	Близко к несоответствию
4	7.0	19**	1.5	1.0	-1.1	3.8	2.3	0.3	То же
4	10.0	19*	1.5	1.0	0.01	3.8	2.3	0.01	Нормально
4	10.0	19**	1.5	1.0	0.01	3.8	2.3	-1.6	A THE SCORE ROUGE BY
5	Пов.	9	1.9	1.3	-1.3	3.7	2.2	0.4	damasad wennengin
5	4.5	9	1.9	1.3	0.7	3.7	2.2	-1.0	Questas summinapoque
6	Пов.	9	1.90	1.3	-1.88	3.7	2.2	2.1	Близко к несоответствию
6	5.0	9	1.9	1.3	-1.2	3.7	2.2	0.7	Нормально
7	Пов.	15	1.6	1.1	-2.0	3.9	2.3	3.2	Не соответствует
7	1.0	15	1.6	1.1	-0.5	3.9	2.3	0.3	Нормально
7	2.0	15	1.6	1.1	-0.8	3.9	2.3	0.09	**************************************
7	3.0	15	1.6	1.1	-0.5	3.9	2.3	-0.7	Para ango dor» ango
7	4.0	15	1.6	1.1	-0.2	3.9	2.3	-1.6	William Control of the Control of th
8	Пов.	10	1.8	1.2	-2.0	3.8	2.3	2.7	Не соответствует
0	1108.	10	1.6	1.2		ые воды	1 2.3		The coordinate of the coordina
9	Пов.	8	2.0	1.3	0.2	3.5	2.1	-2.0	Нормально
9	1	8	2.0	1.3	-0.9	3.5	2.1	-0.8	* * * * * * * * * * * * * * * * * * *
10	Пов.	8	2.0	1.3	0.5	3.5	2.1	-1.4	» »
	3.5	8	2.0	1.3	-0.2	3.5	2.1	-1.7	Ha whileighteoerin who are
10	Пов.	15	1.6	1.1	-0.3	3.9	2.3	-1.2	medical banking boths
11	4	15	1.6	1.1	-0.8	3.9	2.3	-0.5	THOSE CHASEN SHARE
	March 1 and 1	15	1.6	1.1	0.8	3.9	2.3	1.0	interests such a or you
12	Пов.	Na 75 50 1 1 1	A STATE OF THE STATE OF	The same	arm arri	1 CONTRACTOR	AND ESSENTIAL TO CARCAGO TOTAL	-0.8	HOURS REES NO COOKER
12	4	15	1.6	1.1	-0.8	3.9	2.3	-0.8	orangomaca, marconio


^{** -} последние 19 сроков наблюдений.

лености (рис. 3ж) и Са. Несмотря на то что в условиях межени зона затухания стоковых течений и фронтальная зона смещаются ближе к реке и район начала свала глубин заполняется высокосолеными водами (28–31‰ на ст. 5 и 31–32‰ на ст. 6), на некоторое время сюда могут проникать воды со сниженной S (23.7‰ на ст. 5 и 23.9‰ на ст. 6) (табл. 1, рисунки в [4, 12]). При этом размах внутрисуточных колебаний показателей значительно увеличивается. Особенности сложившейся при низком речном стоке циркуляции вод с речной и морской стороны бара и ее изменчивость при смене силы и направления ветра могут создавать условия для этого. На ст. 6, где перепад солености был наиболее значителен, имело место совпадение во времени отлива и ослабления нагонного ветра, что увеличивает скорость отливного потока и тем самым способствует проникновению на взморье вод относительно низкой S. В [11] отмечается, что при малом стоке реки на приглубом неприливном взморье кратковременные изменения S в точке могут возникать в результате меандрирования струи речных вод по акватории взморья. Появление на станциях 5, 6 вод со сниженной соленостью могло происходить в результате отрыва от речного потока устойчивых линз солоноватой воды (приливные колебания способствовали этому) и перемещения их в район высокосоленых вод.

Условия для перемещения вод с пониженной соленостью в район высоких соленостей, очевидно, могут возникать и при средних величинах речного стока. Об образовании линз опресненной воды на устьевом взморье р. Раздольной в прилив упоминается в [9]. Это явление должно приводить к более или менее выраженной хаотичной пятнистости пространственных распределений солености и других показателей на устьевом взморье, что, однако, трудно достоверно зафиксировать из-за несинхронности пространственных съемок и требует наблюдений на суточных станциях. Образование и устойчивость во времени опресненных линз воды может быть причиной отдельных отклонений биогенных веществ от консервативности в системе река-море.

Рис. 3. Соотношение среднесуточных значений и внутрисуточной изменчивости для NO_2^- (a), NH_4^+

(б), РО $_4^{3-}$ (в), С $_8$ (г), О $_2$ (д), НСО $_3^{-}$ (е) в Амурском зал. и для S (ж) в Амурском зал. и в р. Раздольной. I, 3, 6, 9, II, I3, I5, 20, 2I, 24 — поверхностные горизонты на станциях 1–10 соответственно; 2, 5, 8, I0, I2, I4, I9, 22, 25 — придонные горизонты на станциях 1–17, 9–10 соответственно; 4, 7 и I0 — промежуточные горизонты на станциях 2–4; 25 и 26 — все горизонты на станциях 1–12; 27 — точка максимальной внутрисуточной изменчивости; 28 и 29 — экспоненциальная и линейная регрессии.

Линейная связь между $\langle P \rangle$ и s^* для O_2 , O_2^* формируется, в основном, благодаря значительным отличиям в содержании и изменчивости растворенного кислорода в поверхностных и придонных водах (табл. 2, рис. 3д). Для поверхностных вод характерны высокие за счет фотосинтеза значения $\langle O_2 \rangle$ и $\langle O_2^* \rangle$ и низкие значения s^* . Увеличение s^* ограничивается процессом обмена кислородом на границе вода – атмосфера. В придонных водах при наличии скачка плотности наблюдаются, наоборот, низкие значения $\langle O_2 \rangle$ и $\langle O_2^* \rangle$ из-за расхода кислорода на окисление осаждающегося на дно органического вещества и менее интенсивного фотосинтеза и высокие, в основном, за счет приливноотливных колебаний вод значения s^* [2, 3, 14]. Превышение значений изменчивости О2 и О2 в придонных водах относительно таковой в поверхностных водах (в 1.4-2.7 раза в летний период при наличии скачка плотности вод) является характерной особенностью полей внутрисуточной изменчивости этих показателей в Амурском зал.

Для показателей первой группы зависимости между s^* и $\langle P \rangle$ могут быть аппроксимированы линейной функцией

$$s^* = a \langle P \rangle + b, \tag{1}$$

где коэффициент a < 0 (рис. 3д—ж). Однако, по мере роста пространственных градиентов показателей и увеличения скорости стокового течения в направлении речного бара они все лучше аппроксимируются экспоненциальными или степенными соотношениями, нежели линейными (кроме зависимостей для O_2 , O_2^*) (рис. 3ж).

Для S соотношение (1) и соответствующая экспоненциальная зависимость, построенные в интервале $22.6\%o \le \langle S \rangle \le 33.0\%o$, имеют следующий вид:

$$s^* = -0.206\langle S \rangle + 6.73,$$
 (2)

$$s^* = 2200 \exp(-0.292\langle S \rangle).$$
 (3)

Достоверность аппроксимации экспериментальных данных соотношением (2) составила $R^2 = 0.69$, соотношением (3) – $R^2 = 0.85$ (m = 19). Обе зависимости построены без использования данных для поверхностных горизонтов на станциях 4—6, полученных в условиях обсуждавшихся выше отклонений от средних режимных условий (табл. 1).

Соотношения (2)—(3) можно построить и для одних поверхностных вод залива. В этом случае величина $\langle S \rangle$ может рассматриваться не только как параметр, отражающий степень влияния основного источника опреснения (р. Раздольной), но и как функция расстояния, например, от речного бара. Для имеющихся данных

$$s^* = 2600 \exp(-0.297\langle S \rangle), \quad R^2 = 0.95 \ (m = 5).$$
 (4)

Значения соответствующих коэффициентов в уравнениях (3) и (4) очень близки.

Таким образом, характерной особенностью структуры полей значений внутрисуточной изменчивости солености (и консервативных показателей) в приливном эстуарии является экспоненциальное увеличение этих значений в направлении усиления влияния речного стока. Чрезвычайная сложность динамических процессов, обусловленная малыми глубинами, сложными контурами берегов и рельефом дна, а также изменяющимися взаимодействиями берегового стока, ветра и приливов в большей или меньшей степени искажают эту закономерность и усложняют структуру полей изменчивости гидрохимических показателей.

Особенностью вертикальной структуры полей внутрисуточной изменчивости солености (и консервативных показателей) в прибрежных водах, находящихся под влиянием берегового стока, является превышение значений *s** в поверхностных горизонтах относительно таковых в придонных горизонтах. Для солености в Амурском зал. при средних величинах стока р. Раздольной это превышение составляет от 3 (фронтальная зона, станции 1, 7) до 11 (открытая часть залива, ст. 2) раз (рис. 3ж) [12, 14]. Следует отметить, что во фронтальной зоне внутрисуточная изменчивость очень высока не только на поверхности, но и в придонных водах.

Значительные вариации солености в придонных водах являются следствием ее высоких пространственных градиентов и адвективного переноса вод под скачком плотности, меняющего свое направление и скорость в соответствии с фазой прилива и сгонно-нагонными колебаниями уровня моря [7, 9]. В придонных водах разреза бар – м. Песчаный в отлив эти градиенты составляли 1.5–2.6%/км. Под скачком плотности на придонном горизонте суточной ст. 7 были зафиксированы течения скоростью 3.0–9.5 см/с с направлением 88–161° в прилив и течения скоростью 4.8–10.1 см/с с направлением 260–310° в отлив (направление на север 0°. При этом коэффициент корреляции между *S* и измеренным уровнем вод составил –0.71 (*n* = 15).

От обсуждавшейся выше закономерности могут отклоняться соотношения изменчивостей некоторых показателей в районах с придонными водами, находящимися под сильным влиянием восстановленных ДО, и в районах субмаринной разгрузки пресных вод. На ст. 2 изменчивость HCO_3^- , TCO_2 и SO_4^{2-} в придонных водах была примерно в 2 раза выше, чем на поверхности, а на ст. 3 изменчивость S, K^+ , Ca^{2+} , Mg^{2+} , SO_4^{2-} , HCO_3^- , TA и TCO_2 в придонных водах была выше или соизмерима с таковой на поверхности (табл. 1, рис. 3е, ж).

Оценки из соотношения (3) показывают (рис. 3ж), что при наибольших величинах $\langle S \rangle$ = = 34.0–31.1‰ изменчивость солености составляет

0.1–0.2% (минимальное экспериментальное значение $s^*=0.060$ (зафиксировано в придонных водах ст. 2). При уменьшении $\langle S \rangle$ до значения 24.7% (соответствующего максимальной солености солоноватых вод [7], s^* постепенно увеличивается на порядок и достигает 1.6% (В солоноватых водах фронтальной зоны при последующем уменьшении $\langle S \rangle$ до 22.6% и менее значения s^* уже стремительно увеличиваются до 3.0% и более. Судя по значениям $\langle S \rangle$ и s^* на речных суточных станциях 9–12, по мере дальнейшего убывания $\langle S \rangle$ при движении к реке изменчивость солености в поверхностных водах достигает некого максимального значения $s^*_{\rm max}$ (или $\Delta P_{\rm max}$), а затем снижается. Это снижение при средней величине речного стока и незначительном ветре, по-видимому, может быть описано экспонентой (рис. 4) [10].

Представляет интерес оценка возможных в Амурском зал. величин s_{max}^* и ΔP_{max} для солености и в какой части фронтальной зоны эстуария р. Раздольной их следует ожидать (эти квазиконстанты – характеристики эстуария - важны при изучении процессов и проведении измерений, которые зависят от вариаций солевого фона). Такие оценки можно сделать, используя распределение солености на поверхностном разрезе река - море (выполненном за как можно более короткий срок в отлив или в прилив) и данные достаточно подробных суточных наблюдений, по крайней мере, в одной точке этого разреза. Географическое положение точки максимальной внутрисуточной изменчивости (при данном очертании береговой линии и рельефе дна) зависит, главным образом, от величины речного стока, от скорости, направления и длительности воздействия ветра, от величины прилива и его асимметрии, а также от характера взаимодействия этих факторов между собой. Во время наблюдений на разрезе бар – м. Песчаный суточные станции не проводили. Однако значение S 12.82‰ на ст. 4 разреза (отлив) и минимальное за сутки значение солености $S_{\min} = 12.32\%$ на поверхностном горизонте суточной ст. 7 (располагавшейся в точке 4 станции разреза), а также гидрометеорологические условия в период обеих съемок были очень близки.

Разрез и ст. 7 выполнены при одинаковых величинах водного стока р. Раздольной (76 и 75 м³/с соответственно) в штиль и маловетреную погоду (табл. 1). Поэтому в качестве ориентировочных минимального и максимального за приливной период значений солености на ст. 4 разреза использовали минимальное и максимальное за сутки значения солености в поверхностных водах суточной ст. 7 ($S_{\min} = 12.32\%$ 0 и $S_{\max} = 24.75\%$ 0). Считая, что распределение минимальных и максимальных за приливной период значений солености на разрезе примерно параллельны друг другу [7] (хотя при приближении к речному бару приливной подпор эту параллель-

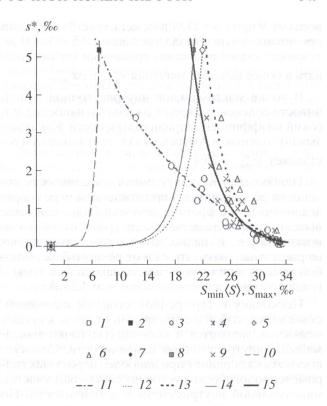


Рис. 4. Соотношение внутрисуточной изменчивости и среднесуточных, максимальных и минимальных за сутки значений солености в р. Раздольной и в Амурском зал. при расходе воды в реке 70–106 м³/с. 1–3 – минимальные за сутки значения солености на всех горизонтах на станциях 9–12 в реке, в точке максимальной изменчивости (3 км от бара) и на всех горизонтах станций 1–4, 7–8 в заливе соответственно; 4–6 – максимальные за сутки значения солености там же; 7–9– среднесуточные значения солености там же; 10–15 – нелинейная регрессия (10, 12, 14 – предположительно экспоненциальная, 11 – логарифмическая, 13, 15 – экспоненциальная).

ность все более искажает), получаем, что при данных гидрометеорологических условиях сдвиг между крайними приливным и отливным положениями фронтальной зоны ΔL_h составляет ~2.8 км (рис. 1a). По литературным данным такой сдвиг может достигать 2-3.6 км [6, 9]. Сравнение оценок разностей между минимальными и максимальными за приливной цикл значениями солености в различных точках разреза показало, что наибольший размах солености на поверхности должен наблюдаться примерно в трех км мористее гребня речного бара, а его величина составляет $\Delta P_{\rm max} \approx 15\% o$ (от $S_{min} \approx 7\%$ о до $S_{max} \approx 22\%$ о (рис. 1a). Значению $S_{min} \approx 7\%$ о (как следует из приведенного ниже уравнения (5) и из уравнения (3), соответствуют $s_{\text{max}}^* \approx 5.2\%$ о и $\langle S \rangle \approx 20.7\%$ (Полученная оценка $s_{\rm max}^*$ совпадает с максимальной среди имеющихся экспериментальных данных внутрисуточной изменчивости $S s^* =$ = 5.5% ($\Delta P = 15.6\%$), зафиксированной в придонных

водах ст. 9 при $\langle S \rangle$ = 21.9(в межень (рис. 3ж). Высота приливов в Амурском зал. составляет 0.5—0.7 м. В эстуариях с более высокими приливами можно ожидать и более высокие значения $s_{\rm max}^*$ и $\Delta P_{\rm max}$.

В точке максимальной внутрисуточной изменчивости солености следует ожидать и наиболее высокий коэффициент вариаций солености. Как показывают оценки, в Амурском зал. этот максимум составляет $v_{\rm max}^* \approx 25\%$.

Наибольшая внутрисуточная изменчивость солености обеспечивается прохождением через определенную точку фронтальной зоны вод с наиболее высокими пространственными градиентами солености. На рис. 16 видно, что в точке, находящейся на расстоянии около трех км от речного бара, в любой момент приливного цикла находились воды с градиентами солености не менее чем 4.2%/км.

Поскольку ветер, речной сток, их взаимодействие между собой и с приливами от суток к суткам меняются, меняются и координаты точки максимальной внутрисуточной изменчивости. Совокупность этих координат при наиболее вероятных гидрометеорологических условиях составляет участок максимальной внутрисуточной изменчивости. По оценкам, указанная точка может располагаться примерно в четырех км от бара при $\Delta L_h = 2$ км и в двух км от бара при $\Delta L_h = 3.6$ км.

Корректное сравнение динамичности исследуемых вод по изменчивости того или иного гидрохимического показателя (сравнение между собой различных *s**), оценка доверительных интервалов для среднесуточных и единичных значений показателей, а также использование *s** в качестве погрешности построения карт полигонов и разрезов (возникающей за счет несинхронности наблюдений в различных точках) опирается на представление о нормальности внутрисуточных распределений показателей в точке и ее окрестностях или, по крайней мере, близости их к таковому [8]. С этой точки зрения представляет интерес рассмотреть (рис. 4), насколько симметричны относительно графика зависимости (3) графики зависимостей

$$s^* = -3.33 \ln(S_{\min}) + 11.7$$
, $R^2 = 0.94 (m = 19)$, (5) $s^* = 13\,100 \exp(-0.343\,S_{\max})$, $R^2 = 0.80 (m = 19)$, (6) где S_{\min} и S_{\max} — минимальное и максимальное за сутки значение солености в различных точках наблюдений. Соотношения (5) и (6) построены в интервалах $S_{\min} = 12.32-32.90\%$ и $S_{\max} = 24.75-33.27\%$ (соответственно для тех же точек, что и соотношения (2)—(3).

На рис. 4 видно, что при уменьшении солености и росте ее изменчивости до s_{\max}^* асимметрия графиков функций $s^* = f(S_{\min})$ и $s^* = f(S_{\max})$ относительно графика функции $s^* = f(\langle S \rangle)$ увеличивается: нарастает "сдвиг" значений $\langle S \rangle$ к значениям S_{\max} . Это

явление сопровождает усиление влияния источника опреснения (р. Раздольной) и приводит к появлению отклонений внутрисуточных распределений солености от нормального закона [8].

Согласно критериям для малых выборок (n < 20) [8], распределение данных можно считать нормальным, если справедливы неравенства

$$|A| \le 3\sqrt{D(A)}, \quad |E| \le 5\sqrt{D(E)},$$
 (7)

где |A| и |E| — модули выборочных асимметрии и эксцесса, $A=[\Sigma(P_i-\langle P\rangle)^3]$ $(s^*)^3/n$, $E=[\Sigma(P_i-\langle P\rangle)^4]$ $(s^*)^4/n$, $i=1,\ldots,n$; D(A) и D(E) — дисперсии выборочных асимметрии и эксцесса, D(A)=6 (n-1)/(n+1)(n+3), D(E)=24n $(n-2)(n-3)/(n+1)^2(n+3)(n+5)$; n — число наблюдений в точке.

Проверка на нормальность имеющихся выборок наблюдений за соленостью показала, что большинство из них можно отнести к нормально распределенным даже при более жестких критериях (табл. 3)

$$|A| \le 2\sqrt{D(A)}, \quad |E| \le 3\sqrt{D(E)}.$$
 (8)

Значимое, обусловленное асимметрией неподчинение внутрисуточных распределений солености нормальному закону зафиксировано на поверхностных горизонтах станций 7—8, где в наибольшей степени проявлялось влияние р. Раздольной. Наиболее близки к отклонению от нормальности были распределения солености на поверхностном горизонте ст. 6 (асимметрия за счет кратковременного опреснения в области высокосоленых вод в межень, см. выше) и на горизонте 7 м на ст. 7 (табл. 1, 3).

Нормально распределены, согласно выше приведенным критериям (7), и данные наблюдений за O_2 и O_2^* на станциях 1–5, 7.

Асимметрия S_{\min} и S_{\max} относительно $\langle S \rangle$, как случайное явление, может наблюдаться в любой точке водного пространства. Механизм наблюдаемого устойчивого нарастания этой асимметрии в направлении усиления влияния речного стока (рис. 4) связан с превышением продольных отливных градиентов относительно продольных приливных градиентов солености и со все более увеличивающимся превышением скорости суммарного стокового течения в отлив над скоростью суммарного стокового течения в фазу приливного подпора [7, 9]. На рис. 16 видно, что на участке от морской границы фронтальной зоны р. Раздольной (7 км от бара в отлив) до точки максимальной внутрисуточной изменчивости (3 км от бара) разница вышеупомянутых градиентов $\Delta \operatorname{grad}(S)$ сначала увеличивается, затем уменьшается, но все время соблюдается неравенство $\Delta \operatorname{grad}(S) > 0$. При этом все более значительное снижение солености в отлив все менее "уравновешивается" увеличением солености в прилив, что и приводит к росту асимметрии S_{\min} и S_{\max} относитель-HO $\langle S \rangle$.

В точке максимальной изменчивости $\Delta \operatorname{grad}(S) \approx$ ≈ 0, но увеличивающаяся в направлении к бару разница скоростей суммарного стокового течения в отлив и прилив, очевидно, уже достаточно велика для поддержания асимметрии. При последующем движении к речной границе фронтальной зоны (~1.5 км от бара в отлив, рис. 1а) уже продольные приливные градиенты солености все более превышают отливные, $\Delta \operatorname{grad}(S) < 0$. При этом (судя по данным для S на речных суточных станциях 9-12) значения s^* и асимметрия уменьшаются и отклонения распределений солености от нормального становятся все менее значимыми (рис. 3ж, 4, табл. 3). Поскольку динамику вод на мелководье в значительной степени регулируют направление и сила ветра, очевидно, что ветровые воздействия описанную картину для условий маловетрия могут существенно искажать.

В силу асимметрии S_{\min} и S_{\max} относительно $\langle S \rangle$ среднее за приливной цикл положение фронтальной зоны сдвинуто ближе к ее крайнему приливному положению (рис. 1a, 4).

Для того чтобы уточнить характер зависимости между s^* и расстоянием от речного бара L в поверхностной зоне смешения вычислим значения s^* для данных L, подставив в выражение (5) экспериментальные значения солености, полученные для $2.8~\mathrm{km} \le L \le 8.4~\mathrm{km}$ на разрезе бар — м. Песчаный на станциях 3-5 (отлив), 6 (малая вода) и 7 (40 минут после момента малой воды). Зависимость между s^* и L хорошо описывается экспонентой (рис. 1a)

$$s^* = 12.1 \exp(-0.33 L), \quad R^2 = 0.93 (m = 5),$$
 (9)

Оценивая затем для данных L и s^* значения $\langle S \rangle$ из (3) и значения S_{\max} из (6) и рассчитывая величину асимметрии $As = [(\langle S \rangle - S_{\min}) - (S_{\max} - \langle S \rangle)]$ (рис. 4), получаем, что зависимость между As и L в поверхностной зоне смешения может быть описана полиномом 2-й степени

$$As = 0.43L^2 - 7.1L + 29.0 (m = 5).$$
 (10)

С точки зрения внутрисуточной изменчивости показателей поверхностная зона смешения речных и морских вод в приливном эстуарии имеет определенную пространственную структуру. Для S (и других консервативных показателей) вне фронтальной зоны за ее отливной морской границей, как правило, стандартные отклонения s^* минимальны, а соответствующие распределения S подчинены нормальному закону.

Во фронтальной зоне в направлении реки происходит экспоненциальный рост s^* и резкое увеличение асимметрии минимальных и максимальных за сутки значений солености относительно среднесуточной солености, что приводит к нарастанию отклонений распределений солености от нормального закона. На участке с наибольшими в течение приливного цикла продольными градиентами солености значения s^* и асимметрия достигают максимума и затем уменьшаются. В реке значения s^* опять минимальны, а распределения солености – нормально распределены. Участок максимальной внутрисуточной изменчивости является высокоградиентной динамичной (с точки зрения внутрисуточной динамики солености) границей между относительно статичными водами нижней части эстуария, с одной стороны, и водами верхней части эстуария и реки, с другой.

Выполненный выше анализ изменения s^* в зависимости от $\langle S \rangle$ (соотношение (3)) и анализ соответствия распределений солености нормальному закону позволяет сделать некоторые практические выводы. При необходимости оценивать внутрисуточную изменчивость солености в зоне смешения разных по составу вод следует выполнить как минимум две (а лучше три) суточные станции. Одну – в точке, наиболее удаленной от берегового стока, где соленость велика и значения з* минимальны (например, в придонных морских водах), вторую - в точке, где можно ожидать максимальных для исследуемой акватории значений s^* (например, в поверхностной фронтальной зоне). Третью станцию желательно выполнить в районе морской границы фронтальной зоны, где начинается экспоненциальный рост значений s^* (рис. 1a, 3ж).

Для оценки s^* в других точках наблюдений может быть выполнена интерполяция. Поскольку данные суточных наблюдений за соленостью, как правило, нормально распределены, значения s* обоснованно могут быть использованы как для сравнения динамичности вод (районирование по изменчивости), оценки доверительных интервалов для единичных и среднесуточных значений S, так и в качестве оценок погрешности построения карт пространственных распределений солености. Завышение частоты изолиний на картах может привести к искажению информации, занижение - к ее потере. Минимальная частота изогалин в данной точке и в ее окрестностях при доверительной вероятности 99% составляет $2 \times 3s^*$ %. Грубо ее можно оценить с помощью уравнения (5) или (6), исходя из результатов единичных измерений солености, которые по каким-либо соображениям можно принять достаточно близкими к минимальным S_{\min} или к максимальным $S_{\rm max}$ за сутки в данной точке. При отклонении внутрисуточных распределений S от нормального закона (во фронтальной зоне, на взморье при экстремально низком речном стоке и в других "асимметричных" условиях) расстояние между изогалинами должно быть увеличено до $2 \times 4s^*$ и даже $2 \times 5s*\%$ [8].

Объем статьи не позволяет рассмотреть закономерности изменения внутрисуточной изменчивости показателей второй группы столь же подробно, как первой. Отметим лишь следующее. Близкие к линейным связи между s^* и $\langle P \rangle$ для показателей второй группы (табл. 4, рис. 3а–г) состоят из двух генетически разных зависимостей. Обе

Таблица 4. Коэффициенты корреляции между $\langle P \rangle$ и s^* для показателей второй и третьей групп

Показатель	The Religion	p (m)	Интервал ⟨ <i>S</i> ⟩, ‰ 32.0–33.0	
NO_3^-	0.67	(4)		
NO_2^-	0.75	<0.01 (12)	25.4–33.0	
PO ₄ ³⁻	0.75	<0.01 (12)	25.4–33.0	
SiO ₃	0.77	<0.01 (10)	25.4–33.0	
NH ₄ ⁺	0.94	<0.001 (8)	25.4–33.0	
$C_{\rm B}$	0.99	<0.001 (9)	25.4–32.9	
CO ₂	0.77	<0.001 (19)	22.6-33.0	
pCO ₂	0.82	<0.001 (19)	22.6-33.0	
$a_{\mathrm{H}^{+}}$	0.79	<0.001 (19)	22.6–33.0	
TA/Cl-	0.75	<0.001 (19)	22.6-33.0	
TCO ₂ /Cl ⁻	0.79	<0.001 (18)	22.6-33.0	
Хл«а»	0.999	<0.001 (5)	24.5-33.0	
CO_3^{2-}	-0.17	>0.05 (19)	22.6–33.0	
$L_{\rm K}$	-0.08	>0.05 (19)	22.6-33.0	
Сорг	-0.01	>0.05 (12)	25.4-32.9	

обусловлены, главным образом, динамикой вод, но отражают симбатный рост s^* и $\langle P \rangle$ в направлении разных источников увеличения показателей второй группы — речного стока и восстановленных ДО. Таким образом, особенностью структуры полей внутрисуточной изменчивости показателей второй группы в прибрежной приливной зоне, подверженной влиянию берегового стока, является тенденция к увеличению этой изменчивости в направлении роста среднесуточных значений показателей — береговых стоков и ДО.

Значения коэффициентов суточных вариаций NH_4^+ , NO_2^- , NO_3^- , PO_4^{3-} , $C_{\rm opr}$, $C_{\rm B}$, SiO_3 и $X_{\rm J}$ «а» часто превышают 33% [12, 14, 16]. Поэтому, исходя из правила трех сигм [8], говорить о нормальности выборок этих показателей, вообще говоря, нельзя и использовать их значения s^* для статистических оценок следует с осторожностью. Для анализа представительности данных натурных измерений перечисленных показателей необходимы сведения о характере их распределений в течение суток.

ВЫВОДЫ

Основные закономерности внутрисуточной изменчивости гидрохимических показателей в

прибрежной зоне моря, находящейся под влиянием берегового стока, заключаются в следующем:

Величины изменчивости и среднесуточных значений показателей связаны между собой. В каждой точке водного пространства показатель с большим среднесуточным значением $\langle P \rangle$ характеризуется, как правило, и большей внутрисуточной изменчивостью s*. В различных точках наблюдений значения s* и $\langle P \rangle$ для S, компонентов ОСС, TA, TCO2, O2 и O2 связаны между собой убывающей экспоненциальной или линейной зависимостью, значения s* и $\langle P \rangle$ для биогенных веществ, $C_{\rm B}$, $a_{\rm H^+}$, TA/Cl-, TCO2/Cl-, CO_2 , pCO2, по крайней мере, в первом приближении — возрастающей линейной зависимостью;

Характерной особенностью вертикальной структуры полей изменчивости солености (и консервативных показателей) является превышение изменчивости в поверхностных водах относительно придонных. Для структуры полей изменчивости O_2 и O_2^* при наличии скачка плотности вод характерна, наоборот, повышенная вариабельность этих показателей в придонных водах относительно поверхностных. В местах субмаринной разгрузки пресных вод внутрисуточная изменчивость солености, компонентов ОСС, HCO_3^- , TA и TCO_2 в придонных водах может быть выше или соизмерима с таковой на поверхности;

В приливном эстуарии поверхностная зона смешения речных и морских вод имеет, с точки зрения внутрисуточной динамики консервативных показателей, определенную пространственную структуру. Основная ее особенность состоит в экспоненциальном скачке изменчивости солености во фронтальной зоне река—море до максимума $s_{\rm max}^*$, сопровождающемся увеличением асимметрии минимальных и максимальных за сутки значений солености относительно среднесуточной солености и появлением отклонений внутрисуточных распределений солености от нормального закона. В силу асимметрии среднее за приливной цикл положение фронтальной зоны смещено к ее крайнему приливному положению;

В эстуарии р. Раздольной при средних величинах речного стока и незначительном ветре участок максимальной изменчивости солености располагается примерно в трех км от речного бара, $s_{\max}^* \approx 5\%$ ($\Delta P_{\max} \approx 15\%$, $v_{\max}^* \approx 25\%$. В межень в районах с высокой среднесуточной соленостью может наблюдаться повышенная изменчивость солености;

Особенностью структуры полей внутрисуточной изменчивости биогенных веществ, $C_{\rm B}$, $a_{\rm H^+}$, TA/Cl^- , TCO_2/Cl^- , CO_2 , pCO_2 является тенденция к увеличению изменчивости в направлении усиления влияния береговых стоков и ДО.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аникиев В.В., Шевцова О.В. Факторный анализ внутрисуточного гидрохимического режима в зоне смешения речных и морских вод (р. Раздольная—Амурский залив, Японское море) // Вод. ресурсы. 1995. Т. 22. № 6. С. 715–725.
- 2. Аникиев В.В., Шевцова О.В., Ярош В.В. Исследование с помощью факторного анализа внутрисуточного гидрохимического режима мелководной бухты эстуарного типа // Вод. ресурсы. 1988. № 4. С. 110–119.
- 3. Аникиев В.В., Шевцова О.В., Ярош В.В. Факторный анализ внутрисуточного гидрохимического режима вод на загрязнённом участке прибрежной зоны Японского моря // Вод. ресурсы. 1993. Т. 20. № 1. С. 38–48.
- 4. Аникиев В.В., Шумилин Е.Н., Лобанов А.А. и др. Поведение тяжелых металлов при смешении речных и морских вод. Суточная изменчивость содержания Fe, Mn, Zn и Cu в воде и взвеси эстуария р. Раздольная—Амурский залив // Геохимия. 1990. № 10. С. 1494—1504.
- 5. Грегораускас М.М., Мокрик Р.В., Йокшас К.К. Гидрохимические аспекты исследования разгрузки пресных подземных вод в Балтийском море // Вод. ресурсы. 1986. № 4. С. 13–22.
- 6. Дударев О.В., Боцул А.И., Савельева Н.И. и др. Масштабы изменчивости литолого-биогеохимических процессов в эстуарии реки Раздольной (Японское море): потоки терригенного материала и формирование донных осадков // Состояние морских экосистем, находящихся под влиянием речного стока. Владивосток: Дальнаука, 2005. С. 7–40.
- 7. *Михайлов В.Н.* Гидрологические процессы в устьях рек. М.: ГЕОС, 1997. 176 с.

- 8. Пустыльник Е.И. Статистические методы анализа и обработки наблюдений. М.: Наука, 1968. 288 с.
- 9. Савельева Н.И., Аникиев В.В., Дударев О.В. Изменчивость стратификации вод в северной части Амурского залива Японского моря в летний период // Состояние морских экосистем, находящихся под влиянием речного стока. Владивосток: Дальнаука, 2005. С. 41–52.
- Сеземан Н.А. Упрощенный метод расчета солености в приливных устьях рек // Вод. ресурсы. 1987.
 № 5. С. 23–27.
- 11. *Скриптунов Н.А*. Основные закономерности гидрологических процессов взаимодействия реки и моря // Вод. ресурсы. 1987. № 4. С. 114–119.
- 12. Тищенко П.Я., Звалинский В.И., Шевцова О.В. Гидрохимические исследования эстуария река Раздольная Амурский залив // Состояние морских экосистем, находящихся под влиянием речного стока. Владивосток: Дальнаука, 2005. С. 53–88.
- 13. Шевцова О.В. Изменчивость кальций-хлорного и магний-хлорного отношений в водах бухты Алексеева (о. Попова, Японское море) при различных гидрометеоусловиях // Матер. годичной сессии ТОИ. Владивосток: Дальнаука, 1997. С. 151–160.
- 14. *Шевцова О.В.* Внутрисуточная изменчивость гидрохимических показателей в Амурском заливе (Японское море) // Вод. ресурсы. 2001. Т. 28. № 6. С. 729–741.
- 15. Назаров В.С., Рыбников А.А., Ляшенко А.Ф., Рыбкин М.И. Изменчивость температуры и солености воды океане // Тр. ГОИН. 1974. Вып. 119. С. 16–58.
- 16. Sikorowicz G., Falkowska L., Burska D. et. al. Diurnal variations in nitrogen, phosphorus and iron compounds in the southern Baltic Sea // Oceanology (by institute of Oceanology PAS). 2005. V. 47. № 2. P. 243–263.